obshalka

Форум о политике и ТАК ...за жизнь вААще...
Текущее время: Сб апр 27, 2024 11:37 pm

Часовой пояс: UTC + 2 часа




Начать новую тему Ответить на тему  [ 1 сообщение ] 
Автор Сообщение
 Заголовок сообщения: К вопросу о ветрогенераторах
СообщениеДобавлено: Вс фев 03, 2008 3:04 am 
Не в сети
Аватара пользователя

Зарегистрирован: Пт ноя 17, 2006 6:30 pm
Сообщения: 8575
Откуда: Lemberg!
Как всегда не всё так просто.

Современные методы генерации электроэнергии из энергии ветра

Мощность ветрогенератора зависит от площади, заметаемой лопастями генератора. Например, турбины мощностью 3 МВт (V90) производства датской фирмы Vestas имеют общую высоту 115 метров, высота башни 70 метров, диаметр лопастей 90 метров.

В августе 2002 года компания Enercon построила прототип ветрогенератора E-112 мощностью 4,5 МВт. До декабря 2004 года турбина оставалась крупнейшей в мире. В декабре 2004 года германская компания REpower Systems построила свой ветрогенератор мощностью 5,0 МВт. Диаметр ротора этой турбины 126 метров, вес гондолы - 200 тонн, высота башни - 120 м. В конце 2005 года Enercon увеличил мощность своего ветрогенератора до 6,0 МВт. Диаметр ротора 114 метров, высота башни 124 метра.

Наибольшее распространение в мире получила конструкция ветрогенератора с тремя лопастями и горизонтальной осью вращения, хотя кое-где еще встречаются и двухлопастные. Были попытки построить ветрогенераторы так называемой ортогональной конструкции, т.е. с вертикальным расположением оси вращения. Считается, что они имеют преимущество в виде очень малой скорости ветра, необходимой для начала работы ветрогенератора. Главная проблема таких генераторов - механизм торможения. В силу этой и некоторых других технических проблем ортогональные ветроагрегаты не получили практического распространения в ветроэнергетике.

Наиболее перспективными местами для производства энергии из ветра считаются прибрежные зоны. В море, на расстоянии 10-12 км. от берега (а иногда и дальше) строятся офшорные фермы. Башни ветрогенераторов устанавливают фундаменты из свай, забитых на глубину до 30 метров.

Также могут использоваться и другие типы подводных фундаментов, а также плавающие основания. Первый прототип плавающей ветряной турбины построен компанией H Technologies BV в декабре 2007. Ветрогенератор установлен на плавающей платформе в 10,6 морских милях от берега Южной Италии на участке моря глубиной 108 метров.


Распространение ветроэнергетики

В 2006 году сумарные мощности ветряной энергетики выросли во всём мире до 73 904 МВт. Бо́льшая часть установленных мощностей (69 % на 2005 год) сконцентрирована в Европе. В Германии, к примеру, 20 622 МВт.


Страна 2005 г. МВт. 2006 г. МВт. 2007 г. МВт.
Германия 18428 20622 -
Испания 10028 11615 -
США 9149 11603 16818
Индия 4430 6270 -
Дания 3122 3136 -
Китай 1260 2405 -
Италия 1718 2123 -
Великобритания 1353 1963 -
Португалия 1022 1650 -
Франция 757 1567 -
Нидерланды 1224 1560 -
Канада 683 1451 -
Япония 1040 1394 -
Австрия 819 965 -
Австралия 579 817 -
Греция 573 756 -
Ирландия 496 643 -
Швеция 510 564 -
Норвегия 270 325 -
Бразилия 29 237 -
Египет 230 -

Таблица: Суммарные установленные мощности, МВт. по странам мира 2005—2006 г.
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 прогноз 2008 2009 2010
7475 9663 13696 18039 24320 31164 39290 47686 59004 73904 90000 109000 132000 160000


Страны Евросоюза в 2005 году вырабатывают из энергии ветра около 3 % потребляемой электроэнергии.

В 2006 году ветряные электростанции Германии произвели 30,6 млрд кВт·ч. электроэнергии, что составляет 7 % от всей произведённой в Германии электроэнергии.

Около 20 % электроэнергии в Дании вырабатывается из ветра.

Индия в 2005 году получает из энергии ветра около 3 % всей электроэнергии.

В 2007 г. в США из энергии ветра было выработано 48 млрд. кВт.ч. электроэнергии, что составляет более 1% электроэнергии, произведённой в США за 2007 г.

Перспективы

Запасы энергии ветра более чем в сто раз превышают запасы гидроэнергии всех рек планеты.

Правительством Канады установлена цель к 2015 году производить 10% электроэнергии из энергии ветра.

Германия планирует к 2020 году производить 20% электроэнергии из энергии ветра.

Европейским Союзом установлена цель: к 2010 году установить 40 000 МВт. ветрогенераторов.

В Испании к 2011 году будет установлено 20 000 МВт. ветрогенераторов.

В Китае принят Национальный План Развития. Планируется, что установленные мощности Китая должны вырасти до 5 000 МВт. к 2010 году и до 30 000 МВт. к 2020 году.

Индия к 2012 году увеличит свои ветряные мощности в 4 раза в сравнении с 2005 годом. К 2012 году будет построено 12 000 МВт. новых ветряных электростанций.

Новая Зеландия планирует производить из энергии ветра 20% электроэнергии.

Великобритания планирует производить из энергии ветра 10% электроэнергии к 2010 году.

Египет - к 2010 году установить 850 МВт. новых ветрогенераторов.

Международное Энергетическое Агентство International Energy Agency (IEA) прогнозирует, что к 2030 году спрос на ветрогенерацию составит 4 800 ГигаВатт.



Экономические аспекты ветроэнергетики

Себестоимость электроэнергии

Себестоимость электричества, производимого ветрогенераторами, зависит от скорости ветра.

Скорость ветра - Себестоимость (для США, 2004 год)

7,16 м/с - 4,8 цента/КВт.ч.

8,08 м/с - 3,6 цента/КВт.ч.

9,32 м/с - 2,6 цента/КВт.ч.

Для сравнения: себестоимость электричества, производимого на угольных электростанциях США 4,5-6 цента/кВт.ч. Средняя стоимость электричества в Китае 4 цента/кВт.ч.

При удвоении установленных мощностей ветрогенерации себестоимость производимого электричества падает на 15%. Ожидается, что себестоимость еще снизится на 35-40% к концу 2006г. В начале 80-х годов стоимость ветряного электричества в США составляла $0,38.

В марте 2006 года Earth Policy Institute (США) сообщил о том, что в двух районах США стоимость ветряной электроэнергии стала дешевле стоимости традиционной энергии. Осенью 2005 года из-за роста цен на природный газ и уголь стоимость ветряного электричества стала дешевле электроэнергии, произведенной из традиционных источников. Компании Austin Energy из Техаса и Xcel Energy из Колорадо первыми начали продавать электроэнергию, производимую из ветра, дешевле, чем электроэнергию, производимую из традиционных источников.

Другие экономические проблемы

Ветроэнергетика является нерегулируемым источником энергии. Выработка ветроэлектростанции зависит от силы ветра, фактора, отличающегося большим непостоянством. Соответственно, выдача электроэнергии с ветрогенератора в энергосистему отличаяется большой неравномерностью как в суточном, так и в недельном, месячном, годовом и многолетнем разрезе. Учитывая, что энергосистема сама имеет неоднородности энергонагрузки (пики и провалы энергопотребления), регулировать которые ветроэнергетика, естественно, не может, введение значительной доли ветроэнергетики в энергосистему способствует ее дестабилизации. Понятно, что ветроэнергетика требует резерва мощности в энергосистеме (например, в виде газотурбинных электростанций), а также механизмов сглаживания неоднородности их выработки (в виде ГЭС или ГАЭС). Данная особенность ветроэнергетики существенно удорожает получаемую от них электроэнергию. Энергосистемы с большой неохотой подключают ветрогенераторы к энергосетям, что привело к появлению законодательных актов, обязующих их это делать.

Проблемы в сетях и диспетчеризации энергосистем из-за нестабильности работы ветрогенераторов начинаются после достижения ими доли в 20-25% от общей установленной мощности системы. Для России это будет показатель, близкий к 50000 – 55000 МВт.

По данным испанских компаний "Gamesa Eolica" и "WinWind" точность прогнозов выдачи энергии ветростанций при почасовом планировании на рынке "на день вперед" или спотовом режиме превышает 95%.

Небольшие единичные ветроустановки могут иметь проблемы с сетевой инфраструктурой, поскольку стоимость линии электропередач и распределительного устройства для подключения к энергосистеме могут оказаться слишком большими.

Крупные ветроустановки испытывают значительные проблемы с ремонтом, поскольку замена крупной детали (лопасти, ротора и т.п.) на высоте более 100 м является сложным и дорогостоящим мероприятием.

Экономика малой ветроэнергетики

Применение ветрогенераторов в быту для обеспечения электричестовм малоцелесообразно из-за:

* Высокой стоимости инвертора ~ 50% стоимости всей установки (применяется для преобразования переменного или постоянного тока получаемого от ветрогенератора в ~ 220В 50Гц (и синхронизации его по фазе с внешней сетью при работе генератора в параллель))
* Высокой стоимости аккумуляторных батарей ~ 25% стоимости установки (используется в качестве источника бесперебойного питания при отсутствии или пропадании внешней сети)
* Для обеспечения надёжного электроснабжения к такой установке иногда добавляют дизель-генератор, сравнимый по стоимости во всей установкой.

В настоящее время несмотря на рост цен на энергоносители, себестоимость электроэнергии не составляет сколько нибудь значительную величину у основной массы производств, на фоне других затрат. ключевым для потребителя остаётся надёжность и стабильность электроснабжения.

Основными факторами приводящими к удорожанию энергии получаемой от ветрогенераторов являются:

* Необходимость получения эл.энергии промышленного качества ~ 220В 50 Гц (применяется инвертор)
* Необходимость автономной работы в течении некоторого времени (применяются аккумуляторы)
* Необходимость длительной бесперебойной работы потребителей (применяется дизель-генератор)

В настоящее время наиболее экономически целесообразно плучение с помошью ветрогенераторов не электрической энергии промышленного качества, а постоянного или переменного тока (переменной частоты) с последующим преобразованием его с помощю ТЭНов в тепло, для обогрева жилья и получения горячей воды. Эта схема имеет несколько приемуществ:

* Отопление является основным энергопотребителем любого дома в России.
* Схема ветрогенератора и управляющей автоматики кардинально упрощается.
* Схема автоматики может быть в самом простом случае построена на нескольких тепловых реле.
* В качестве аккумулятора энергии можно использовать обычный бойлер с водой для отопления и горячего водоснабжения.
* Потребление тепла не так требовательно к качеству и бесперебойности, температуру воздуха в помещении можно поддерживать в широких диапазонах 19-25С - в бойлерах горячего водоснабжения -40-97С без ущерба для потребителей.

Экологические аспекты ветроэнергетики

Шум

Ветряные энергетические установки производят две разновидности шума:

* механический шум (шум от работы механических и электрических компонентов)
* аэродинамический шум (шум от взаимодействия ветрового потока с лопастями установки)


Источник шума Уровень шума, дБ.
Болевой порог человеческого слуха 120
Шум турбин реактивного двигателя на удалении 250 м. 105
Шум от отбойного молотка в 7 м. 95
Шум от грузовика при скорости движения 48 км/ч на удалении от него в 100 м. 65
Шумовой фон в офисе 60
Шум от легковой автомашины при скорости 64 км/ч 55
Шум от ветрогенератора в 350 м. 35-45
Шумовой фон ночью в деревне 20-40

В непосредственной близости от ветрогенератора у оси ветроколеса уровень шума достаточно крупной ветроустановки может превышать 100 дБ.

Законы, принятые в Великобритании, Германии, Нидерландах и Дании, ограничивают уровень шума от работающей ветряной энергетической установки до 45 дБ в дневное время и до 35 дБ ночью. Минимальное расстояние от установки до жилых домов - 300 м.

Визуальное воздействие

Визуальное воздействие ветрогенераторов - субъективный фактор. Для улучшения эстетического вида ветряных установок во многих крупных фирмах работают профессиональные дизайнеры. Ландшафтные архитекторы привлекаются для визуального обоснования новых проектов.

В обзоре, выполненном датской фирмой AKF, стоимость воздействия шума и визуального восприятия от ветрогенераторов оценена менее 0.0012 евро на 1 кВт ч. Обзор базировался на интервью, взятых у 342 человек, живущих поблизости от ветряных ферм. Жителей спрашивали, сколько они заплатили бы за то, чтобы избавиться от соседства с ветрогенераторами.

Использование земли

Турбины занимают только 1% от всей территории ветряной фермы. На 99% площади фермы возможно заниматься сельским хозяйством или другой деятельностью, что и происходит в таких густонаселенных странах, как Дания, Нидерланды, Германия. Фундамент ветроустановки, занимающий место около 10 м в диаметре, обычно полностью находится под землей, позволяя расширить сельскохозяйственное использование земли практически до самого основания башни. Земля сдаётся в аренду, что позволяет фермерам получать дополнительный доход. В США стоимость аренды земли под одной турбиной составляет $3000-$5000 в год.

Таблица: Удельная потребность в площади земельного участка для производства 1 ГВт/ч электроэнергии

Источник энергии Удельный показатель площади земельного участка, требующейся для производства 1 ГВт/ч за 30 лет (м2)

Геотермальный источник 404
Ветер 800-1335
Фотоэлектрический элемент 364
Солнечный нагревательный элемент 3561
Уголь 3642

Вред, наносимый животным и птицам
Причины гибели птиц (из расчета на 10 000) штук
Дома/ окна 5500
Кошки 1000
Другие причины 1000
ЛЭП 800
Механизмы 700
Пестициды 700
Телебашни 250
Ветряные турбины Менее 1

Помехи телесигналам

Металлические сооружения ветроустановки, особенно элементы в лопастях, могут вызвать значительные помехи в приеме телесигнала. Чем крупнее ветроустановка, тем большие помехи она может создавать. В ряде случаев для решения проблемы приходится устанавливать дополнительные ретрансляторы.

_________________
Я Родину свою люблю, а государство ненавижу!

А. Розенбаум


Вернуться к началу
 Профиль  
 
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ 1 сообщение ] 

Часовой пояс: UTC + 2 часа


Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 0


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения

Найти:
Перейти:  
cron
Powered by Forumenko © 2006–2014
Русская поддержка phpBB